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Abstract
The Peierls stress of the moving 1

2 〈111〉{110} screw dislocation with a planar and
non-dissociated core structure in Ta has been calculated. The elastic strain energy which is
associated with the discrete effect of the lattice and ignored in classical Peierls–Nabarro (P–N)
theory has been taken into account in calculating the Peierls stress, and it can make the Peierls
stress become smaller. The Peierls stress we obtain is very close to the experimental data. As
shown in the numerical calculations and atomistic simulations, the core structure of the screw
dislocation undergoes significant changes under the explicit stress before the screw dislocation
moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the
experimental data that the screw dislocation retracts its extension in three {110} planes and
transforms its dissociated core structure into a planar configuration. Therefore, the core
structure of the moving 1

2 〈111〉{110} screw dislocation in Ta is proposed to be planar.

1. Introduction

It is generally accepted that the dislocations play a prominent
role in controlling the properties of materials, in particular
their mechanical behavior [1, 2]. Since the screw dislocation
is considered to be of primary importance in controlling
the plastic deformation of bcc crystals at low temperature,
the core structure has been studied extensively by numerical
calculations and atomistic simulations [3–5]. It is suggested by
Hirsch that the screw dislocation can dissociate into more than
one plane, and that such a non-planar dissociation can interpret
the observed high Peierls barrier and the strong temperature
dependence of the yield stress [6]. Although various different
splittings of the screw dislocation were taken into account [7],
with the help of computer simulations, the idea of the famous
three-way dissociation into three equivalent {110} planes is
widely accepted, that is, the core structure of the static screw
dislocation is dissociated into three equivalent {110} planes.
However, it is speculated whether the core structure of the
screw dislocation is still dissociated into three equivalent {110}
* This work was supported by the National Natural Science Foundation
of China (10774196), the Science Foundation Project of CQ CSTC
(2006BB4156) and Chongqing University Postgraduates’ Science and
Innovation Fund (200707A1A0030240).
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planes when the screw dislocation moves. Consequently,
some numerical calculations and atomistic simulations were
conducted, and it is shown that the core structure always
undergoes significant changes under the explicit stress before
the screw dislocation moves [8–11]. Then the core structure
must retract some of its extension and transform to a different
configuration, whereas the degree of retracting its extension
is still undetermined. In order to get the core structure
of the moving screw dislocation, the Peierls stress of the
screw dislocation has been widely calculated by numerical
calculations and atomistic simulations. However, there is still
a discrepancy between the calculated results and experimental
data in that the Peierls stress predicted by the numerical
and atomistic simulations is much higher than that observed
at low temperature. The previous simulations of the screw
dislocation in Ta are around 1.5 GPa [12–14], whereas the
experimental data is 260 MPa. Afterward, the Peierls stress
obtained from the new model generalized pseudopotential
theory (MGPT) [15, 16] and the qEAM2 force field [17]
are about 660 and 440 MPa, respectively. The reason of
the discrepancy may be the incomplete understanding of the
mechanism of the dislocation motion, and the configuration of
the core structure is very important to the Peierls stress when
the screw dislocation moves.
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In classical P–N theory, only the misfit energy is
considered in calculating the dislocation energy. However, in
the context of the full lattice theory, it is found that, except
for the misfit energy, the extra elastic strain energy which
is associated with the discreteness of the lattice is crucial to
the dislocation energy, and it can make the dislocation energy
become much smaller than that in classical P–N theory [18]. In
this paper, the Peierls stress of the moving 1

2 〈111〉{110} screw
dislocation with planar and non-dissociated core structure in
Ta is calculated. By taking into account the elastic strain
energy, the Peierls stress of the screw dislocation with planar
core structure is about 200 MPa, and it is very close to the
experimental data. Therefore, it can be speculated just as was
shown in previous calculations that the core structure of the
1
2 〈111〉{110} screw dislocation undergoes significant changes
under the explicit stress before the screw dislocation moves.
Furthermore, the screw dislocation transforms its dissociated
core structure in three {110} planes to a planar core structure.
Therefore, the core structure of the moving 1

2 〈111〉{110} screw
dislocation in Ta is proposed to be planar.

2. The modified P–N equation of the screw
dislocation

The modified P–N equation due to the lattice discrete
correction has been obtained firstly using the solvable models
and derived later in a model-independent way [19–21], and
the modified P–N equation of screw dislocation taking into
account the discrete correction of lattice takes the following
form:
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where u is the relative displacement of the bilateral misfit
planes along the slip direction 〈111〉, μ is the shear modulus in
the direction 〈111〉, β is the parameter of the discrete correction
of lattice to the core structure and f is the nonlinear interaction
which can be calculated from the generalized-stacking-fault
(GSF) energy [22]. The parameter β related to the acoustic
phonon velocity and the lattice geometry structure [21] and f
can be given by
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where � is the volume of the primitive cell, σ is the area of
the primitive cell of the misfit plane, θ , φ are the orientation
angles of the relative position of a pair of neighboring atoms
in the intrinsic frame with the axes given by the polarization
directions, b = √

3a/2 is the Burgers’ vector, d = √
2a/2 is

the spacing between misfit planes and a is the lattice constant
of the bcc crystals. For 1

2 〈111〉{110} screw dislocation, θ =
π/4, φ = arcsin

√
3/3, a = 3.30 Å and μ = 65.1 GPa for

Table 1. The values of the fitting parameter 
 of the GSF energies
of Ta.

FP LMTO VASP MGPT qEAM2 qEAM3


 −0.270 −0.344 −0.360 −0.373 −0.422

Ta [23]. The dimensionless parameter 
 describes the higher-
order corrections of the misfit energy in the Fourier series, and
it can be determined by fitting the GSF energy in the direction
〈111〉{110}. If 
 = 0, then the sinusoidal force law in the
classical P–N model can be recovered.

The GSF energy in the direction 〈111〉{110} of Ta has
been calculated by the MGPT potential, the full-potential
linear muffin-tin orbital (FP LMTO) method [15], the first-
principles-based force field (FF) qEAM1, qEAM2 and qEAM3
potentials [17] and the first-principles ab initio method
(VASP—Vienna ab initio Simulation Package) [24]. Because
the GSF energy from the FF qEAM1 agrees very well with FP
LMTO, then FF qEAM1 is not considered here. In order to
display the fitting effects, the fitted GSF energies from MGPT,
FP LMTO and VASP have been plotted in figure 1 for example,
and the values of 
 have been shown in table 1. It can be seen
from figure 1 that the numerical results can be well described
by equation (4) and 
 always takes the negative values as can
be seen from table 1.

The modified P–N equation (1) can also be solved by the
truncating method given by one of the authors previously [25].
The solution is

u = b

π

[
arctan p + (1 − ε)p

1 + p2

]
+ b

2
, (5)

with p = κx and κ = κ0ε = 2ε/d . After complicated
calculations, an algebraic equation about 
, ε and ε0 can be
obtained:




(
10

9
+ ε

3

)
+ (1 − ε)2 − ε2

ε2
0

(
1 − 11ε

16

)
= 0, (6)

and ε is the root of the algebraic equation. The dimensionless
parameter ε0 only depends on the elastic properties and
geometry structure with

1

ε2
0

= 8β

μd
. (7)

For 1
2 〈111〉{110} screw dislocation, ε0 = 0.500. The structure

factors ε and 
 obtained from fitting different GSF energies
have been summarized in table 2. It is displayed by
equation (6) that ε is related to ε0 and 
, that is, the structure
factor ε is determined by the discrete correction of the lattice
and the modification of the sinusoidal force law, and it can be
shown in table 3 that ε increases with increasing 
.

3. The Peierls stress in classical P–N theory

In the classical P–N theory, only the misfit energy is considered
in calculating the dislocation energy, and the Peierls stress can
be written as [26]

σp = Ae− αξ

b , (8)

2
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Figure 1. The fitting of the GSF energy. The solid lines and the stars represent the GSF energy used in this paper and calculated in other
references, respectively.

Table 2. The values of ε with FP LMTO, VASP, MGPT, qEAM2
and qEAM3 methods.

FP LMTO VASP MGPT qEAM2 qEAM3


 −0.270 −0.344 −0.360 −0.373 −0.422
ε 0.261 0.232 0.226 0.221 0.202

Table 3. The Peierls stress of screw dislocation of Ta (in units of
GPa) only considering the modification of the sinusoidal force law.

FP LMTO VASP MGPT qEAM2 qEAM3


 −0.270 −0.344 −0.360 −0.373 −0.422
ε 0.419 0.350 0.336 0.326 0.286
Peierls stress 2.70 2.00 1.87 1.78 1.34

where α = 2π , ξ is the half-width of the dislocation. For
1/2〈111〉{110} screw dislocation, A = μ, ξ = 1/κ0 and the
Peierls stress given by equation (8) is about 5 GPa (7.69 ×
10−2μ). It is obvious that the Peierls stress in classical P–
N theory is very high. The possible reason is that the half-
width of the screw dislocation is too narrow. Nevertheless,

the discrete effect of the lattice can make the core width
broaden [27]. Therefore, it is necessary to take into account
the lattice discrete effect, and it is not approximate to calculate
the dislocation energy and the Peierls stress using the classical
P–N theory.

4. The Peierls stress of the 1
2〈111〉{110} screw

dislocation in bcc Ta

In the context of the full lattice theory, it is found that,
besides the misfit energy, the elastic strain energy which is also
associated with the discrete effect of the lattice is also crucial
to the dislocation energy, and the dislocation energy can be
written as [18, 28]

E = Emis + Eela, (9)

where Emis is the misfit energy, Eela is the elastic strain energy
and the Peierls stress can be obtained from the maximum slope
of the dislocation energy. If the elastic strain energy and the
discrete correction as well as the modification of the sinusoidal

3
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Table 4. The Peierls stress of screw dislocation of Ta (in units of MPa) as well as the corresponding 
 and ε.

FP LMTO VASP MGPT qEAM2 qEAM3 Experiments


 −0.270 −0.344 −0.360 −0.373 −0.422 —
ε 0.261 0.232 0.226 0.221 0.202 —
Peierls stress 214 257 250 241 182 260

force law are not considered, then the Peierls stress is just that
in P–N theory.

In order to investigate the effect of the elastic strain energy,
lattice discrete correction and the modification of the sinusoidal
force law to the Peierls stress, some calculations have been
done using the parametric derivation method [28].

(i) Only taking into account the elastic strain energy without
considering the discrete correction and the modification of
the sinusoidal force law, that is 
 = 0 and ε = 1, then
the Peierls stress is about 532 MPa (8.17 × 10−3μ). It is
obvious that the elastic strain energy can make the Peierls
stress become much smaller, being one order of magnitude
smaller than that in the P–N model.

(ii) Only taking into account the discrete correction of the
lattice without considering the discrete correction and the
elastic strain energy, that is 
 = 0, ε = 0.366, then the
Peierls stress is 1.45 GPa (2.22×10−2μ), which is smaller
than that in the P–N model only in magnitude.

(iii) Only considering the modification of the sinusoidal force
law without taking into account the discrete correction
and the elastic strain energy, the corresponding ε and the
Peierls stress with 
 have been summarized in table 3. It
is shown in table 3 that the modification of the sinusoidal
force law can only make the magnitude of the Peierls
stress in the P–N model become smaller.

In general, it can obviously be seen that the three factors
of the elastic strain energy, the discrete correction and the
modification of the sinusoidal force law can all make the
Peierls stress become smaller, and the elastic strain energy
is the most important for the Peierls stress. Therefore, it is
indispensable to consider the elastic strain energy as well as
the discrete correction and the modification of the sinusoidal
force law in calculating the Peierls stress.

By taking into account the three factors above, we
calculate the Peierls stress of the 1

2 〈111〉{110} screw
dislocation with planar and non-dissociated core structure in
Ta. The results we obtain have been shown in table 4. As can
be seen, our results are around 200 MPa and they are very close
to the experimental data of 260 MPa.

That the Peierls stress of the planar screw dislocation
is very close to the experimental data indicates that the
core structure may be planar when the 1

2 〈111〉{110} screw
dislocation moves. It has been revealed by numerical
calculations and atomistic simulations that the core structure
of the screw dislocation always undergoes significant changes
under the explicit stress before the screw dislocation
moves [8–11]. Our results not only validate that fact but also
can explain the possible mechanism of the screw dislocation
motion. It is shown that, under the explicit stress, just
the same as in the prediction of the numerical calculations

and atomistic simulations, the screw dislocation undergoes
significant changes. Furthermore, it retracts the extension
in three {110} planes and transforms its dissociated core
structure into a planar configuration. Obviously, the planar
core structure is much easier to move than the dissociated core
structure in three {110} planes. Despite the core structures of
the moving 1

2 〈111〉{110} screw dislocations in other bcc metals
are not always planar, at least it is proposed to be planar in Ta.

Initially, the Peierls stress obtained from the numerical
calculations in Ta is about 1.5G Pa, which is several times
of the experimental data of 260 MPa. This value is much
lowered in recent numerical simulations. The Peierls stress
obtained from the new MGPT potential and the qEAM2 force
field is about 660 and 440 MPa, respectively. With the further
improvement of the atomistic potentials and the calculation
precision, the Peierls stress may be decreased further and closer
to the experimental data.

5. Summary

The Peierls stress of the moving 1
2 〈111〉{110} screw dislocation

with planar and non-dissociated core structure in Ta has been
calculated. The elastic strain energy which is associated
with the discrete effect of the lattice and ignored in classical
P–N theory has been taken into account in calculating the
Peierls stress. The Peierls stress we obtain is very close to
the experimental data. It is revealed by the Peierls stress
of the planar screw dislocation and the experimental data
as well as the prediction of the numerical calculations and
the atomistic simulations that, under the explicit stress, the
core structure of the screw dislocation undergoes significant
changes. Furthermore, it retracts its extension in three
{110} planes and transforms its dissociated core structure into
a planar configuration before the screw dislocation moves.
Therefore, the core structure of the moving 1

2 〈111〉{110} screw
dislocation in Ta is proposed to be planar.
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